Maurer–Cartan equations for Lie symmetry pseudogroups of differential equations
نویسندگان
چکیده
منابع مشابه
Lie symmetry analysis for Kawahara-KdV equations
We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.
متن کاملApplication of the Lie Symmetry Analysis for second-order fractional differential equations
Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to il...
متن کاملlie symmetry analysis for kawahara-kdv equations
we introduce a new solution for kawahara-kdv equations. the lie group analysis is used to carry out the integration of this equations. the similarity reductions and exact solutions are obtained based on the optimal system method.
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملMaurer–cartan Equations for Lie Symmetry Pseudo-groups of Differential Equations
A new method of constructing structure equations of Lie symmetry pseudo-groups of differential equations, dispensing with explicit solutions of the (infinitesimal) determining systems of the pseudo-groups, is presented, and illustrated by the examples of the Kadomtsev–Petviashvili and Korteweg–de-Vries equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2005
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.1836015